Chapter 3: The Chemistry of Organic Molecules

http://s2.guickmeme.com/img/b6/b61d57fcbc0f40a210c5b2c5fdf157630967bfa1cff380fdeaa20b1f1ff55839.inc

3-1 Organic Molecules

- ocontain carbon and hydrogen; important for living things
- o biomolecules carbohydrates, lipids, proteins, nucleic acids

Carbon Atoms

- o six electrons; 4 valence electrons
- ocan make up to 4 bonds
- o number of atoms it bonds with determines shape of molecule
- often bonds with CHNOPS
- C-C bonds are stable and allow formation of carbon skeleton
- o chains and rings

Functional Groups

- o specific combination of bonded atoms that always reacts the same way (regardless of skeleton)
- allow diversity of biomolecules
- odetermine much of chemistry of biomolecules (use R to represent rest of mol)
- You must know this table (p. 39)

- o note that polarity is affected by addition of functional groups
- o this is especially important in watery cell env

Table 3.2 Functional groups.						
	Func	tional Groups				
Group	Structure	Compound	Significance			
Hydroxyl	R-OH	Alcohol as in ethanol	Polar, forms hydrogen bond			
			Present in sugars, some amino acids			
Carbonyl	R-C	Aldehyde as in formaldehyde	Polar			
	Н	,	Present in sugars			
	O Ketone as in acetone		Polar			
		Present in sugars				
Carboxyl (acidic)	R−C OH	Carboxylic acid as in acetic acid	Polar, acidic			
			Present in fatty acids, amino acids			
Amino	R-N H	Amine as in tryptophan	Polar, basic, forms hydrogen bonds			
			Present in amino acids			
Sulfhydryl	R—SH	Thiol as in ethanethiol	Forms disulfide bonds			
			Present in some amino acids			
Phosphate	0	Organic phosphate as in	Polar, acidic			
	R-O-P-OH OH	phosphorylated molecules	Present in nucleotides, phospholipids			

R = remainder of molecule

Isomers

- o same molecular formula; different arrangement
- different functional groups lead to different chemical behaviors

glyceraldehyde	dihydroxyacetone	
н н о	н <mark>о</mark> н 	
H—C—C—C—H 	H-C-C-C-H	

http://faculty.clintoncc.suny.edu/faculty/michael.gregory/files/bio%20101/bio%20101%20lectures/biochemistry/alpha%20glucose.gif

The Biomolecules of Cells

- o molecules are taken in, broken down and rearranged
- o monomers are linked together to build polymers

Biomolecules				
Category	Subunit(s)	Polymer		
Carbohydrates*	Monosaccharide -	➤ Polysaccharide		
Lipids	Glycerol and fatty acids -	→ Fat		
Proteins*	Amino acids —	➤ Polypeptide		
Nucleic acids*	Nucleotide —	DNA, RNA		

Synthesis and Degradation of Biomolecules

- condensation reaction/dehydration
 synthesis builds polymer from monomers
 - molecule of water formed in reaction
- hydrolysis reaction breaks
 polymers into monomers
 water is added to split bonds
- enzymes are required for these reactions
- p. 41 questions 1 and 3

3-2 Carbohydrates

- ocarbon water
- \circ $C_m(H_2O)_n$ is general formula

a. Cell walls contain cellulose.

c. Cell walls contain peptidoglycan.

Monosaccharides

- simple sugars
- 3 7 carbons (naming)
- soluble in water due to presence of hydroxyl groups (polar)
- oglucose
 - C₆H₁₂O₆ (also formula for fructose and galactose)
 - fuels cellular respiration (converted into ATP) но.
 - transported in blood
- odeoxyribose DNA
- oribose RNA

http://palaeos.com/fungi/fpieces/images/Glucose.gif

Deoxyribose has a hydrogen here rather than - OH. http://www.chemguide.co.uk/organicprops/aminoacids/deox

Disaccharides: Varied Uses

- 2 monosaccharides
- o sucrose table sugar
 - glucose + fructose
 - sugar transport in plants
- o maltose used in brewing
 - glucose + glucose
 - formed in starch digestion
- o lactose found in milk
 - glucose + galactose
 - intolerance

(a) Dehydration reaction in the synthesis of maltose

(b) Dehydration reaction in the synthesis of sucrose

011 Pearson Education, Inc.

 $http://class connection.s3. a mazon aws. com/652/flash cards/729652/jpg/05_05 disaccharide synth-li316447585157.jpq$

- helical shape allows enzymes to access linkages for breaking down
- breaking down releases sugar mols
- o not as soluble in water
- o too large to pass through membrane
- o starch glucose storage in plants
 - stored in granules in cells
 - <u>amylose</u> nonbranched
 - <u>amylopectin</u> branched
- oglycogen glucose storage in animal
 - stored in granules in liver cells
 - storage and release controlled by hormones
 - insulin promotes storage
 - glucagon promotes release

Polysaccharides: Structural Molecules

- o <u>cellulose</u> plants
 - glucose
 - most abundant carb and org mol on Earth
 - microorgs can digest, but not animals
 - some animals have endosymbionts that aid in use of cellulose
 - dietary fiber in others
- ochitin animals and fungi
 - glucose with amino group
 - fungal cell walls
 - exoskeleton of arthropods
 - used in medicine and cosmetics
- o peptidoglycan bacteria
 - amino acid chain added to monomer

p. 58 Testing Yourself questions 1-4, 10, 11

- olong hydrocarbon chain with a carboxyl group at one end
- o saturated fatty acids contain no double bonds between carbon atoms
 - contain as many hydrogens as they can hold
- o unsaturated fatty acids have double bonds in hydrocarbon chain
 - reduces number of hydrogens that can bond

Triglycerides

- o three fatty acids attached to a glycerol molecule (dehydration synthesis
 - results in three H₂O)

- o nonpolar
- o unsaturated fatty acids prevent packing of molecules and remain liquid at room temp (oils)
- o saturated fatty acids have no kinks and remain solid at room temp (fats)
- o saturated fats can accumulate in blood vessels
- o long-term energy storage (C-H bonds and lighter than glycogen per amt of energy)

Phospholipids

- oglycerol with two fatty acids and a phosphate group (polar)
- ophosphate group bonded to another organic group
- o hydrophilic head region
- hydrophobic tail region
- separate biological compartments by forming bilayers (plasma membrane)

Steroids: Four Fused Rings

- o four fused carbon rings with different functional groups
- o cholesterol
 - physical stability in plasma membrane
 - precursor to steroid hormones (see p. 48)
 - contributes to circulatory disorders due to build up in vessels

ATHEROSCLEROSIS

https://www.azvascular.com/wp-content/uploads/2013/07/atherosclerosis-vein-problem-azvascular.jpg

Waxes

- long-chain fatty acid and long-chain fatty alcohol
- o solid at room temp
- oprotective cuticle
- oskin/fur
- ear repels insects and prevents dirt from reaching eardrum
- p. 49 question 3
- p. 58 Testing Yourself q 5
- p. 59 Think Scientifically q 1

a

b.

3-4 Proteins

Functions in Animals:

- o metabolism enzymes
- ∘ support keratin, collagen
- o transport channel and carrier proteins
 - hemoglobin
- o defense antibodies

oregulation - insulin, growth hormone

o motion - actin, myosin

Amino Acids

- o alpha carbon
- o amino group (-NH₂)
- carboxyl group (-COOH)
- hydrogen atom
- o R group variable

Peptides

- o amino acid monomers join together in a condensation reaction
- o bond bet. carboxyl group of one amino acid and amino group of another is peptide bond
- o polar (oxygen more electronegative than nitrogen)
- o leads to hydrogen bonding bet. amino acids in polypeptide chain

Shape of Proteins

- o proteins are polypeptides that have been folded into a particular shape and have function
- o amino acid sequence affects folding/function

Primary Structure

- sequence of amino acids
- o dictated by genes (DNA --> RNA --> protein)

 $http://biochemanics.files.wordpress.com/2013/04/protein_-_primary_structure.jpg$

Secondary Structure

- opolypeptide coils or folds due to hydrogen bonding
- o α helix formed by hydrogen bonding bet every 4th amino acid
- \circ β pleated sheets formed when polypeptide turns back on itself and hydrogen bonding occurs along length of fold
- keratin, silk and other fibrous proteins exist as long helices or pleated sheets

Tertiary Structure

- o folding resulting in final 3-D shape of protein
- oglobular proteins have tertiary structure
- caused by
 - hydrophobic interactions
 - ionic, covalent and hydrogen bonding bet R groups
 - disulfide linkages
- o denaturing of a protein occurs at high temp or change in pH

http://images.tutorvista.com/cms/images/123/tertiary-structure-protein.JPG

Quaternary Structure

- o found in proteins that consist of more than one polypeptide
- ∘ hemoglobin

Protein-Folding Diseases

ochaperone proteins - aid in folding and possibly correct errors in folding

 cystic fibrosis and Alzheimer's are associated with misshapen proteins (possibly missing chaperones)

o TSEs (ex: mad cow) may be due to misfolded proteins that cause other proteins to

misfold (called prions)

p. 53 q. 2,3p. 58 TY q.6,7,12,13p. 59 TS q. 2

http://upload.wikimedia.org/wikipedia/commons/2/23/Histology_bse.jpg

3-5 Nucleic Acids

- o monomers = nucleotides
- \circ joined together in cond rxn to make DNA and RNA
- o some function as monomers
- o contain:
 - 5-carbon sugar
 - phosphate
 - nitrogen-containing base
 - purines double ring
 - pyrimidines single ring

- opentose sugar is deoxyribose
- o adenine, guanine, cytosine and thymine
- o alternating sugar-phosphate backbone with bases hydrogen bonded in center; double stranded
- twisted into double helix
- o stores replication information and order of amino acids in proteins

RNA

- opentose sugar is ribose
- o adenine guanine, cytosine and uracil
- o alternating sugar-phosphate backbone; single stranded
- omRNA, tRNA, rRNA and others

ATP

- o adenosine triphosphate
- o adenine, ribose and three phosphates
- o high energy last 2 phosphate bonds are unstable and can be broken releasing energy
- O ADP, AMP
- ATP hydrolysis powers many cell processes

